
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1986

The design of a real time operating system for

a fault tolerant microcomputer.

Voigt, Robert J.

http://hdl.handle.net/10945/21775

Downloaded from NPS Archive: Calhoun

DUDLEY KNOX LIBRARY
BfAVAL POSTGRADUATE SCHOOL "^-^

MOHTEJ:i,iJ\
,
^ixi.i.x''UBHIA £'6945-5008

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
OPE]

THE DESIGN OF A REAL TIME
RATING SYSTEM FOR A FAULT TOLERANT

MICROCOMPUTER

by

Robert J. Voigt

December 1986

Thesis Advisor: Larry W. Abbott

Approved for public release; distribution is unlimited

T 233772

secuwi^y Classification op This pagT

REPORT DOCUMENTATION PAGE

la SEPOflT SECURITY CLASSif ICATION

UNCLASSIFIED
'b RESTRICTIVE MARKINGS

2d SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

J OlSTRl9UTlON/AVAILA8lLlTY OF REPORT

Approved for public release; distri-
bution is unlimited

i PERFORMING ORGANISATION REPORT NuM8ER(S) S MONITORING ORGANIZATION REPORT NUM9ER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

60 OFFICE SYMBOL
(If spplKibl«)

62

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6< ADDRESS (Cry, Sfafe. tnd ZiPCodt)

Monterey, California 93943-5000

7b ADDRESS (C/fy. Sfif*. and //<>Ccxie)

Monterey, California 93943-5000

la NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If ipphcibi*)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (Ofy, Sfafe, and ///> Cod*) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

1

PROJECT
NO

TASK
NO

WORK jNiT
ACCESSION NO

M t,tlE (includt Security CUmfiCition)
THE DESIGN OF A REAL TIME OPERATING SYSTEM FOR A

FAULT TOLERANT MICROCOMPUTER

\1 PERSONAL AUTHORtS)

Voiqt, Robert J
• 3d 'YPt OF REPORT
Master's Thesis

1 3b TIME COVERED
FROM TO

14 DATE OF REPORT (Year. Month Day)

19 86 December
IS PAGE COuNT

103
'6 Supplementary notation

COSATi COOES
F ElO GROUP SUBGROUP

18 SUBJECT TERMS (Confino* on rtvent if neceua/> 4nd identify by block number)

Operating System, Real Time, Fault Tolerant,
Kernel, Priority Queue

9 ABSTRACT (Confinu* on revertt if necemry trtci identify by block number)
The design and implementation of a real time operating system kernel for a
fault tolerant microcomputer is presented. The operating system is
designed for a real time imbedded system. The particular design is for a
Motorola MC68000 microprocessor, however, the majority of the operating
system is implemented using the C programming language for portability to
other microprocessors. The C source for the kernel is presented. The
source code is modular so that it may be used in part or as a whole
operating system kernel. A heap implementation of a priority ready queue I

is used for task management. Performance measurements are included for
parts of the ready queue.

;0 S'R'3UTiON/ AVAILABILITY OF ABSTRACT

Q UNCLASSIFIED/UNLIMITED D SAME AS RPT O OTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a NAME OF RESPONSIBLE NDiViOUAL

Larry W. Abbott
22b TELEPHONE f/nc/ud» Ares Code)

1408-646-2379
22c OFFICE S^MBO'.

62At
00 FORM 1473.84 MAR 83 APR edition nnay be uied until e«hausted

All other editions are obsolett
SECURITY CLASSIFICATION OF ThiS PAGE

Approved for public release; distribution is unlimited.

The Design of a Real Time
Operating System for a

Fault Tolerant Microcomputer

by

Robert J. Voigt

Lieutenant, United States Navy
B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

ABSTRACT

The design and implementation of a real time operating system

kernel for a fault tolerant microcomputer is presented. The operating

system is designed for a real time imbedded system. The particular design

is for a Motorola MC68000 microprocessor, however, the majority of the

operating system is implemented using the C programming language for

portability to other microprocessors. The C source for the kernel is

presented. The source code is modular so that it may be used in part or as a

whole operating system kernel. A heap implementation of a priority ready

queue is used for task management. Performance measurements are

included for parts of the ready queue.

>M^

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this

research may not have been exercised for all cases of interest. While every

effort has been made, within the time available, to ensure that the

programs are free of errors, they cannot be considered validated. Any

application of these programs without additional verification is at the risk

of the user.

TABLE OF CONTENTS

I. INTRODUCTION 10

A. BACKGROUND 10

B. MOTIVATION FOR FAULT TOLERANT SYSTEMS 11

C. CHOICE OF HARDWARE 13

D. OUTLINE OF THE DESIGN APPROACH 15

II. CONCEPTS 16

A. BACKGROUND 16

B. OVERVIEW 17

C. THE CENTRAL TASK PROCESSOR 20

D. THE TASK SCHEDULER 22

E. THE READY QUEUE 23

F. THE INTERRUPT HANDLER 26

G. SUMMARY 27

III. IMPLEMENTATION OF THE OPERATING SYSTEM 28

A. INTRODUCTION 28

B. SYSTEM OVERVIEW 33

C. THE CENTRAL TASK PROCESSOR... 35

1. A-Line Traps 38

2. Dispatch Table 38

D. THE CYCLE INTERRUPT HANDLER 41

5

E. THE READY QUEUE 43

1. Heap Data Structure 43

2. Enqueue Routine 43

3. Siftup 45

4. Dequeue Routine 48

5. Siftdown Routine 48

6. Purge Routine 52

F. THE TASK SCHEDULER 55

G. INITIALIZATION 58

IV. PERFORMANCE MEASUREMENTS 64

A. BACKGROUND 64

B. COMPARISONS 66

1. Scheduling 66

2. Purging 68

3. Enqueueing 69

4. Dequeueing 70

C. CONCLUSIONS 70

V. CONCLUSIONS 72

A. SUMMARY OF RESULTS 72

B. RECOMMENDATIONS FOR FURTHER RESEARCH 74

APPENDIX A. C AND ASSEMBLY LANGUAGE SOURCE CODE
LISTINGS 75

APPENDIX B. SOURCE CODE FOR A PARTIAL MONITOR 88

APPENDIX C. THE HARDWARE ENVIRONMENT 96

APPENDIX D. READY QUEUE PERFORMANCE DATA 98

LIST OF REFERENCES 100

BIBLIOGRAPHY 101

INITIAL DISTRIBUTION LIST 102

LIST OF TABLES

3.1 TERMS AND DEFINITIONS 28

LIST OF FIGURES

2.1 Operating System Hierarchy 18

2.2 Operating System State Diagram 21

2.3 Minor Cycle Timing Sequence 24

2.4 Performance Estimates of Priority Queues 25

2.5 Relative Orders of Magnitude 26

3.1 A-Line Trap Words 31

3.2 Ready Queue Data Structures 32

3.3 General System Flow 34

3.4 Central Task Processor 37

3.5 A-Line Trap Handler 39

3.6 Dispatch Routine 40

3.7 Cycle Interrupt Handler 42

3.8 Enqueue a Job 44

3.9 Enqueue - Add an Element to the Queue 45

3.10 Siftup- Move an Element Towards the Root 46

3.11(a) Heap Implementatiohof a Priority Queue 47

3.11(b) Heap After Element 01 2 is Added 47

3.12 Dequeue Removes the Top Element from the Queue 48

3.13 The Dequeue Module 49

3.14 Heap After Elememt 004 is Dequeued 50

3.15 Siftdown Routine Moves Elements Towards the Leaf Nodes 51

3.16 Purge Module 53

3.17 Purge Routine to Remove Jobs 54

3.18 Heap After Elements 012 and 015 Have Been Purged 54

3.19 The Task Scheduler 56

3.20 Sample of Job Mask 57

3.21 Schedule Routine 59

3.22 Initialization of the System ^.^ 61

3.23 Create the Ready Queue 62

4.1 Schedule Routine Performance 67

4.2 Performance of the Dequeue Routine 71

L INTRODUCTION

A. BACKGROUND

The topic of this thesis is the design of a kernel for a real time operating

system for a fault tolerant microcomputer system. The kernel of the

operating system is the portion which contains some of the most intensely

used code. A real time operating system, in the most general sense, is a

system which responds to events in real time. Using this general

description, most microcomputers and some minicomputers would fall into

this category. For the purpose of this thesis, a real time system is one

which does not require human intervention, other than to supply start-up

power, to operate and has an operating system able to operate within fairly

severe time constraints. The operating system must be able perform its

task scheduling on a regular clocked interval, must be able to respond to

outside stimulus, and must be capable of dealing with these functions in

real time. The operating system should be capable of fully supporting all

normal supervisory functions.

A second major feature of this operating system is that it is designed for

a fault tolerant environment. A fault tolerant system is able to continue to

provide critical functions after the occurrence of a fault. [Ref. 1 : p. 6] To

reduce or eliminate generic software faults, each module is exhaustively

tested. Several methods are available for protecting against generic

software faults, including recovery blocks and, more controversially, N

version programming, but exhaustive testing has been the only method to

10

prove effective to date. Tests are also run after the software has been

integrated into the system to show that the data flow between modules is

correct. [Ref2 : p. 78]

B. MOTIVATION FOR FAULT TOLERANT SYSTEMS

The demand for fault tolerant computers is not new. The fact that the

cost of microprocessors has dropped dramatically in the past few years has

lead to new avenues of achieving fault tolerance in computing systems. The

computing power of today's thirty two bit microprocessors, coupled with

floating point co-processors, is quickly surpassing the computational power

of earlier computers many times the compact size of these new micro-

computer systems. Hardware fault tolerance can now be achieved

inexpensivley through redundancy without sacrificing the speed and

computing power of a larger system. Microprocessors also consume

substantially less power which in turn leads to a solution for many of the

heat problems found in older computing systems.

There is a wide range of possible applications for a compact, low power,

inexpensive fault tolerant computing system. One obvious example is the

use of computers in any environment where the processor will be isolated

from human intervention for long periods of time as in just about any space

related application. Another use for fault tolerant, compact computers is in

digital fly-by-wire advanced flight control systems. Any situation where the

capability to recover from a non-catastrophic fault is desired is a possible

application for a fault tolerant computer.

11

The operating system in this thesis is designed for the fault tolerant,

real time environment discussed above. An operating system designed for

the real time non-interactive computing system has many advantages over

the real time interactive system. One major advantage is the elimination of

a major source of error, human intervention. The operating system is a

static process system in that processes are not created or disposed of

dynamically. All the processes the operating system will ever need have

already been created and tested before the computer system is expected to

function at full capacity.

The non-interactive real time operating system also has time

constraints not normally associated with an interactive operating system.

The operating system is an interrupt driven system which runs in a series

of time slices called minor cycles. The minor cycle, approximately twenty

milliseconds long for a flight control application, is the smallest period of

time in which the processor must accomplish basic program functions. For

example, in the case of a computer system running a flight control

application, the minor cycle is determined by the frequency requirements of

the flight control laws needed to fly the aircraft.

The microprocessor is interrupted every twenty milliseconds to signal

the beginning of a new minor cycle and to tell the operating system that it is

time to schedule a new batch ofjobs to be completed during that minor

cycle. Those jobs that are not completed during the minor cycle that they

were scheduled in are put back in a ready queue to wait for execution or

completion if a job was interrupted dtiring its execution. One large process

may be scheduled over several minor cycles, forming a major cycle.

12

It may be important to have a job done during a particular minor cycle

or not at all. If a job is time critical and cannot be completed during the

minor cycle it was scheduled in, it is removed from the ready queue without

execution. In order to decide what jobs are to be done and in what order, a

priority is assigned to each job. The operating system designed in this

thesis uses static priority assignment. The priorities never change. In a

real time system where all the possible tasks to be accomplished are known

in advance, a static priority assignment is the most efficient means of

dealing with prioritized jobs.

The operating system designed to operate in an autonomous

environment requires fault tolerance to continue running without outside

help. The operating system may run for several thousand or several million

minor cycles before the computer host is shut down. During the time the

computer system is running, the operating system is completely self

sufficient. The operating system can schedule the necessary tasks and

keep track of resources without external intervention except for incoming

data. In addition, the operating system must be able to respond to external

data inputs and requests in real time. The operating system in this thesis is

designed to operate within the fault tolerant environment.

C. CHOICE OF HARDWARE

An objective of this thesis is the implementation of the operating system

on a commercially available microprocessor. The two families of

microprocessors that were considered for the implementation of the

13

operating system were the National Semiconductor NS32000 series and the

Motorola MC68000 series microprocessors.

The microprocessor that was originally chosen for the project was the

National Semiconductor NS32016 16 bit microprocessor. The NS32016

microprocessor was chosen primarily due to the simplicity and elegance of

the processor design and the direct support of a floating point co-processor,

National Semiconductor's NS32081. However, second sourcing agreements

have have not been productive and the NS32000 chip set has failed to achieve

a market share that would guarantee that it will be supported in the future.

While the lack of attention for the NS32000 family may make the costs of

using the NS32016 attractive, the lack of interest also means a lack of

support in the critical areas of peripheral chip manufacturing by second

party vendors and the lack of low power Complementary Metal Oxide

Silicon (CMOS) chip sets being released and supported. The decision was

made to use the more popular Motorola MC68000 microprocessor.

The MC68000 has proven to be a reliable microprocessor for use in

many of today's microcomputers. The support for the MC68000 has helped

to decrease its cost while time in service continues to prove that the

MC68000 is a tried and true microprocessor. The MC68000 is readily

available in CMOS but it does not have the direct support of a floating point

unit. Even with the drawback of not having the floating point unit, the

MC68000 appears to be the best choice for a mix of efficiency and

effectiveness. The overall goal is to link sever^ MC68000 microprocessor

systems together and, through redundancy, achieve ultra-reliability in the

overall system.

14

D. OUTLINE OF THE DESIGN APPROACH

Chapter II of this thesis is used to explain the concepts used in the

design of the operating system and to provide a general overview of the

main modules which make up the kernel of the operating system.

Chapter III details the implementation of the operating system using a

Pascal-like pseudocode as a program design language. Each module is

discussed in more detail.

Chapter IV describes the performance measurements obtained in the

implementation of the operating system on a microcomputer. Each module

is compared in a relative manner, realizing that the hardware used to test

the system is not ideal.

Chapter V presents the conclusions and recommendations for further

research in this area.

15

11. CONCEPTS

A. BACKGROUND

An operating system of some form or another is required for any

computer system. Because most fault tolerant computer designs have been

custom designs with little or no general purpose use and limited market

share, no ad hoc or sanctioned standard for operating systems has

surfaced. The operating system designed for this project will be of a more

portable nature such that the operating system can be used in other

systems. To achieve the portability goal, the "C" programming language,

which is regarded as portable, was chosen for a majority of the operating

system code.

The complexity of the computer hardware need not be reflected in the

operating system. In the case of a fault tolerant design, simplicity is

desired in both hardware and software. An objective of this thesis is to

achieve a certain amount of robustness in the operating system design

without years of test and evaluation. Another objective is to maintain a

degree of simplicity in a fully functional operating system. To meet all the

design objectives there may be some trade-offs in performance parameters,

such as speed and efficiency. However, in order to maintain real time

responsiveness, there is little room for compromise in speed. The ability to

be diverse and flexible is also desired. The sum of all these qualities: speed,

efficiency, robustness , diversity, and simplicity should create a satisfactory

overall performance in the operating system.

16

Central to the concept of a real-time operating system is the abihty of the

computer system to respond to the randomness of the external world. To

respond to these random external inputs the system needs to be able to

remove some of the uncertainty which arises from these independent

events and to stabilize the situation so that the process can be performed in

an orderly fashion. The method by which random externals are stabilized

and organized is to prioritize the events and to schedule and process these

events with respect to each events' pre-assigned priority. Because a single

CPU is only capable of processing one function at a time, there must be a

great deal of flexibility in the system to deal with random events in addition

to the regularly scheduled tasks.

B. OVERVIEW

The operating system in a real time environment is the manager of ail

hardware and software functions. The operating system can be thought of

as multiple levels of distinct functional layers. The hardware itself forms

the base layer. The kernel is the only level that has a direct interface with

the hardware and has the highest software priority. The supervisor level is

the level which usually supports the user level by making requests of the

kernel and providing some supervisory services to the user level. The user

processes form the user level and are the lowest priority processes. Because

each level represents a higher priority, a hierarchy is formed. Such

hierarchal designs have proven easier to debug, modify and to prove

correct. [Ref. 3 : pp. 341-346] The hierarchy of a typical operating system is

illustrated in Figure 2.1.

17

User Tasks, Run Time Libraries

Scheduling, I/O, Interrupt Handling,

Memory Management, System Services

Figure 2.1 Operating System Hierarchy

18

This thesis is concerned mainly with the kernel level of the operating

system. The user level in a real time imbedded system, such as the system

that this operating system is designed for, rarely has a need for user level

services as they are defined in real time interactive systems. The user

processes in an imbedded system can be thought of as system level

processes and thus help to simplify the design by giving all processes direct

access to the kernel.

The kernel is responsible for the following functions in a real-time

operating system. [Ref. 4 : p. 65]

* Interrupt handling

* Task scheduling

* Task switching

* Task suspension and resumption

* Support of Input/Output activities

* Support of memory management functions

* Support of a file system

The operating system designed in this thesis has fewer capabilities

than those described above. There is no need for the support of a file

system. There is no need for the support of memory management functions

since each processor has its own memory that is shared globally between

the operating system's processes with no dynamic memory allocations. The

major functions performed by the operating system developed here are the

task scheduling, suspension, resumption, switching and interrupt

19

handling. Interrupt handling is the most important because the operating

system is an interrupt driven system.

A general state diagram listing the major functions of the operating

system is shown in Figure 2.2. Each state or module will be discussed in

more detail. As shown in the diagram, each state is a separate software

module written primarily in the "C" programming language. The

modularity of the operating system enhances its portability to other systems

either in part or as a complete operating system.

C. THE CENTRAL TASK PROCESSOR

In order to reliably deal with the variety of inputs in the real-time system

described in this thesis and to maintain simplicity in the design, it was

decided to use a Central Task Processor through which all jobs would be

processed. Each job or routine is assigned its own "instruction" which

must be decoded prior to execution. The only exceptions to this rule are

catastrophic error handling routines and non-maskable interrupts. The

non-maskable interrupt routines are processed without maintaining the

system status because of the serious conditions under which a non-

maskable interrupt can be expected to occur usually means that the system

will need to be reset.

In this design, the Central Task Processor uses the unimplemented

instruction of the Motorola MC68000 microprocessor known as the "A-Line

'

trap. It is called the A-Line trap because the instruction, which is a one

word value, always begins with a hexidecimal "A" in the first four bits. By

assigning each task a different A-Line value in the last 12 bits of the A-Line

20

EXTERNAL
INTERRUPTS

Figure 2J2 Operating System State Diagram

21

word, every process is defined by a one word value. This idea could be

implemented on other microprocessors by the use of a trap style

instruction, however, the flexibility and the large number of tasks that

could be described in a single word made this an obvious advantage for the

MC68000.

D. THE TASK SCHEDULER

The Task Scheduler is responsible for the scheduling of tasks at the

beginning of each minor cycle. The operating system is responsible for the

execution of a sequence of minor cycles, which are initiated by a timer

interrupt generated within the computer system. The timer interrupt

causes the operating system to suspend the task that is being executed and

to start the execution of a new minor cycle. The first thing that happens in

a new minor cycle is to save the state of the suspended job and begin

scheduling a new set of jobs based on the frame number of the new minor

cycle. The frame number is maintained by the frame counter which is a

thirty two bit quantity which has been initialized to zero during the start-up

phase. It is the Task Scheduler's job to insure that the frame counter for

the system is incremented. For aircraft controls, the typical time for a

minor cycle is ten to twenty milliseconds. For example, twenty milliseconds

was used in the Digital Fly-By-Wire Flight Control Validation Experience

for the F-8 aircraft using an AP-101 computer. This twenty millisecond

time for a minor cycle can be varied for experimental purposes and should

be adjusted to be a suitable amount of time for the program functions to be

accomplished. Some functions do not have to be completed in a single

22

minor cycle but require several minor cycles forming a major cycle.

[Ref. 1 : pp. 95-96] Figure 2.3 illustrates the sequence of execution of a

minor cycle.

A desired feature of the operating system is the ability to distribute the

tasks evenly among the minor cycles so as to make better use of the

processor throughput. The jobs are scheduled according to their sample

time requirements, and normally must be completed in the cycle they are

originally scheduled in. Certain jobs are scheduled every cycle while some

may be scheduled every other or every fourth cycle. The jobs which must be

completed during the cycle in which they are scheduled will be marked so

that if a job does not complete execution during the minor cycle in which it

was originally scheduled, the job will be purged from the Ready Queue at

the end of the current minor cycle.

There will be a requirement to indicate which jobs have been purged

from the Ready Queue, especially in the final determination of the length of

the minor cycle. The possibility exists that a job may not be executed until

the frame counter has turned over and is on the same frame number

again, however, with a thirty two bit frame counter, this job would prove to

be delayed 4,294,967,296 times. Assuming a twenty millisecond minor

cycle, a job would have to be delayed 994.2 days or 2.724 years. This is an

acceptable risk.

E. THE READY QUEUE

The heart of the operating system kernel lies in the two most important

functions of the Ready Queue and the Task Scheduler. The major

23

BEGINNING OF A MINOR CYCLE

r ^^
^Schedule Purge -^

:* ^ j^

-^^^
:-^^^S
ti>^^

.^

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I time in ms

T=OMS

JOB LIST POINTERS

EVERY
FRAME

EVERY
OTHER.
FRAME

EVERY
FOURTH.
FRAME

EVERY
EIGHTH^
FRAME

JOBS SCHEDULED DURING SCHEDULE
PHASE OF THE MINOR CYCLE

JOBSNOT SCHEDULED THISFRAME

Figure 2^ Minor Cycle Timing Sequence

24

requirements for these two critical areas are speed and efficiency. A major

percentage of all the code executed by the system lies in the maintenance of

the Ready Queue. The Ready Queue is described by a binary tree data

structure known as a heap. A heap is implemented using a sequential

representation based on an array. The array elements form a complete

binary tree such that each parent is less than either of its children. In order

to achieve a maximimi speed and efficiency the Ready Queue was designed

as a heap implementation of a priority queue.

There are several means of implementing a priority queue. The major

reason for choosing a heap implementation is that it is the most efficient

method for a non-trivial number of elements in the queue for the two

critical queue operations of enqueueing and dequeueing. Figure 2.4

summarizes three types of queues and the approximate orders of

magnitude for a single insertion and deletion in each type of queue.

List

Array Linked Heap

enqueue 0(n) 0(n) 0(log2 n)

dequeue 0(1) 0(1) OGogs n)

Figure 2.4 Performance Estimates of Priority Queues [Ref. 5 : p. 108]

Figure 2.5 illustrates graphically the relative orders of magnitude

differences between the List and Heap priority queues. The lists are more

efficient at dequeueing but the heap is considerably better overall as the

number of elements in the queue, n, becomes large.

25

The Ready Queue is also capable of having a job of the same type

scheduled more than once and will treat these on a first in first out basis.

Two jobs will never actually be identical since a serial number will be

assigned to the job as it enters the queue.

For purging operations, the heap implementation is approximately

equivalent to the list implementation since the queue is represented by an

array of pointers. The heap implementation actually has less housekeeping

for keeping track of free space in the queue than the list implementation.

Overall, the heap implementation appears superior.

Relative Queue Performances

256

T3
3

•rl

a

n)

S

O

0)

U

T3
U
O

128

64

32

16 -

8
-

4
-

2

T \ T 1 \ 1

8 16 32 64 128 256

n - Number of jobs in the queue

Figure 2.5 Relative Orders of Magnitude

26

F. THE INTERRUPT HANDLER

There are several interrupt handlers that are used in the operation of an

operating system. The one which will be discussed here is the Cycle

Interrupt Handler. The Cycle Interrupt Handler is the routine which is

called after the microprocessor has been interrupted for the beginning of a

new frame or minor cycle. Two important functions that must be

performed at the beginning of a new frame are to schedule all the jobs in

the queue for the new minor cycle and to purge any jobs which remain in

queue but are no longer valid. A job is no longer valid when it is marked as

a job to be completed within the current minor cycle but its frame number

does not match the current minor cycle's frame number.

The Cycle Interrupt Handler is responsible for saving the status of the

job that was active at the time of the interrupt and to call the scheduler and

purge functions. After completing the scheduler and purge calls, the Cycle

Interrupt Handler returns the control of the operating system back to the

Central Task Processor. The Central Task Processor then will perform its

function and activate the job with the highest priority.

G. SUMMARY

The basic concepts discussed for each of the main modules of the

operating system have been reviewed in a very general manner. In the

next chapter the implementations will be discussed.

27

III. IMPLEMENTATION OF THE OPERATING SYSTEM

A. INTRODUCTION

In this chapter the details of the implementation will be discussed. The

main modules, the Central Task Processor, the Cycle Interrupt Handler,

the Ready Queue and the Task Scheduler will be illustrated in a Pascal like

pseudocode and flow diagrams. The actual "C" code and assembly

language code is found in Appendix A.

In order to avoid confusion and to set up a basis for the rest of the

chapter, some definitions are provided in Table 3.1. The definitions used in

this thesis may not strictly adhere to definitions used in the development of

other operating system designs but the difference occurs only when a

standard definition is not widely accepted as accurate.

TABLE 3.1 TERMS AND DEFINITIONS

Term Definition

A-Line An A-Line is a one word (16 bit) value

whose first 4 bits are a hexidecimal "A".

A-line Trap A feature of the MC68000 microprocessor

which allows an extension to the normal
instruction set through the use of A-Lines.

C A general purpose, relatively "low level"

programming langauge.

CTP The Central Task Processor through which
all tasks are processed.

28

TABLE 3.1 -- Continued

Term Definition

Dequeue Removing an item from the queue.

Dispatch The process of decoding a job number and
starting execution the job.

Enqueue Adding an item into the queue.

F-Line An F-Line is a one word (16 bit) value
whose first 4 bits are a hexidecimal "F".

F-line Trap A feature of the MC68000 microprocessor
which allows an extension to the normal
instruction set through the use of F-Lines.
This feature is reserved for the addition

of the MC68881 Floating Point Coprocessor.

Failure A condition which can give rise to a fault,

usually considered permanent.

Fault An anomaly in the performance of the system.

Fault Tolerant A system which is able to continue to

provide critical functions after the
performance of a fault.

Interrupt An external condition which causes the

microprocessor to stop execution to

service a request.

Job A specific set of code which defines a
process and is assigned a prioritized

number. Interchangeable with task.

Kernel The portion of the operating system for the
control and management of all operations

that involve processes and resources.

29

TABLE 3.1 -- Continued

Term Definition

Major Cycle An integral number of minor cycles needed
to perform an entire function.

Minor Cycle The smallest interval of time needed to

perform the basic program functions

Monitor A program which allows the monitoring
and alteration of the system.

Nucleus Another term for kernel.

Operating
System

Programs which allow control of the
hardware, making it usable.

Priority Queue A hierarchal queue.

Process A program in execution.

Purge Removal of a no longer needed item from
the queue.

Queue A data structure which contains

information about processes.

Ready Queue A queue whose processes are ready to be
executed.

Real-Time
Operating
System

An operating system which responds to

events as they occur.

Task A specific set of code which defines a

process. Interchangeable with job.

Watch Dog
Timer

A timer which interrupts the system after

a set amount of time has elapsed.

30

In addition to designing the program structure, the design of the

operating system also includes the design of data structures and

"structures" as defined by Kernighan and Ritchie in Reference [6]. There is

also the A-Line trap word which in itself is a type of data structure. Figure

3.1 shows the makeup of an A-Line word.

15 14 13 12 11 10 9

Interrupt Satus Bit

= New Job
1 = Interrupted

Job Number

2 =1024 Possible Jobs

Frame Critical Bit

= Not Frame Critical

1 = Frame Critical

(must be completed within frame)

Figure 3.1 A-Line Trap Word

In this format, the last twelve bits of the word completely describe a job.

The information in the A-Line coupled with a dispatch table gives the

location in Read Only Memory of the job to be executed.

The Ready Queue is the only other major data structure which needs to

be explained. The Ready Queue is a heap implementation of a priority

queue. The queue itself is an array of pointers which point to an array of

nodes which hold the data for each job in the queue. In this fashion all

31

memory for the queue is allocated at the time of the definition of these

arrays. Figure 3.2 shows the data structures involved in the Ready Queue.

Ready Queue

NODE POINTERS
Nodes

JOB NUMBER

FRAME START

SERIAL NUMBER

NEXT FREE NODE

DATA REGISTER

DATA REGISTER 7

ADDRESS REGISTER

ADDRESS REGISTER 7(SP)

Figure 3.2 Ready Queue Data Structures

32

B. SYSTEM OVERVIEW

The operating system is confined to performing a limited number of

services. The reason for these Hmitations is that the operating system is

not meant to be generic or multi-purpose. This operating system is

designed to perform a pre-defined number of tasks that are located in Read

Only Memory (ROM) and are therefore somewhat permanent. The

operating system itself is designed to be ROM resident using Random

Access Memory for the dynamic components of the system such as the

Ready Queue. All of the memory for the Ready Queue and the variables

required by the tasks is pre-allocated during the initialization phase of the

system. By not allowing any dynamic memory allocations, the possibility of

a task overwriting another task's memory space is reduced. By eliminating

accidental memory overwrites, a form of memory protection is added to the

fault tolerant capabilities of the system. The value of the memory protection

scheme is increased because a priori knowledge exists about the memory

requirements of every possible task. With this increased certainty, virtually

all memory overwrites can be eliminated.

Figure 3.3 shows the basic flow for the operating system. Not all of the

modules shown were implemented in "C". There are some functions,

which must deal with hardware, which are not practical or convenient to

write in "C". Some portions of the operating system are executed so

frequently that it is preferable to write these parts of code in assembly

language for execution efficiency. Even the UNIX operating system kernel

contains 1000 lines of assembly code along with its 10,000 lines of "C"

code.[Ref. 4 : p. 484] Those modules written strictly in assembly language

33

Cycle Interrupt

\^ Purge >

Initialize

^ Scheduler ^

Central Task
Processor

A-Line Trap
Handler

I

Resume Job
(RTE)

I
Completed Job

I
^ Dequeue y

Figure 3.3 General System Flow

34

code were the A-Line Trap handler and the main part of the Central Task

processor. For convenience, the portions of code dealing with peripheral

chip initialization and support were also written in assembly language.

As shown in Figure 3.3, the heart of the operating system lies in the

Central Task Processor. The Central Task Processor is made up of the A-

Line Trap handler, and the Job Dispatch Table. All jobs, whether

previously interrupted or not, will be processed by the Central Task

Processor. While the Central Task Processor may be some of the most

heavily used code, it is not particularly complex and therefore the operating

system does not spend a large percentage of time executing this module.

The Ready Queue, with all of its associated maintenance, is the area

where the operating system spends most of its time. In order to increase

the efficiency of the operating system as a whole, close attention must be

paid to the efficiency of the Ready Queue.

The interrupt handler, denoted as the Cycle Interrupt module in Figure

3.3, is a small portion of code which is also written in assembly language

code. The interrupt handler is an additional area of necessary overhead

which must be optimized. The Cycle Interrupt module calls the Task

Scheduler and the Purge routines which in turn call routines that add to

and delete from the Ready Queue, respectively.

C. THE CENTRAL TASK PROCESSOR

All the jobs are processed through the Central Task Processor to

increase fault tolerance. The use of a centralized area of the operating

system to monitor the start of any new job or the completion of any

35

interrupted job was intended to help the operating system monitor the

system and thereby increase its resistance to faults. The Central Task

Processor includes the A-Line Trap handler and the Dispatch Table for

execution of new jobs. The Central Task Processor is also responsible for

the continuation of old jobs that have been previously interrupted.

Figure 3.4 shows the main part of the Central Task Processor which

was implemented in assembly language code to facilitate the use of the A-

Line Trap and the direct manipulation of registers. The first task is the

retrieval of the job number. Because the Ready Queue is a priority queue,

the next job to be executed will always be the top job in the queue. In the one

word A-Line value, which represents the job number, bit eleven is the

interrupt status bit. If the job has been previously started and interrupted

this bit will be set.

There are two ways in which a job can be executed. First, if the job is a

new job, the A-Line value will be loaded into an address location to be

executed as an iinimplemented instruction. Second, if the job had been

started and then interrupted, the microprocessor is restored to the state it

had immediately after the job was interrupted, and then a return from

exception (RTE) instruction is executed.

The return from exception instruction will take the top six bytes off the

stack and resume execution at the restored program counter (PC) which

was stored on the stack. The old status register will also be restored. Since

the stack pointer which is restored prior to the.execution of the RTE is

pointing to the the status of the job when it was interrupted, execution

continues where the job was at the time of the interrupt.

36

Central Task Processor

Retrieve Job Number

Load A-line
Trap Number

Yes

Restore Registers

A-Line Traps

Figure 3.4 Central Task Processor

37

1. A-Line Traps

The routine for the execution of a new job is to load the A-Line Trap

into a pre-defined address so that it will be executed as the next instruction

after the load. Once the program counter encounters this A-Line the

exception handler routes execution to the routine whose address is in the

vector table in low memory. This is the A-Line Traps module whose flow

diagram is illustrated in Figure 3.5.

The first thing done in this exception handling routine is to inhibit

any other interrupts. Since the exception handling routine of the MC68000

has pushed the status register and the program counter onto the stack and

there will not be a return from exception instruction executed from this

routine, the stack must be adjusted. The next thing to do is fetch the job

number that caused the exception in the first place. Based on that job

number, the Dispatch routine is called.

2. Dispatch Table

The Dispatch routine is a "C" routine which sends the processor off

to execute the job. Up until and during execution of the Dispatch routine,

interrupts have been inhibited. It is the responsibiHty of the job being

executed to lower the interrupt priority set by the A-Line Traps module.

The pseudocode in Figure 3.6 illustrates the basic switch statement used to

dispatch to the job.

Upon completion of any routine, whether it was interrupted or not,

the routine must be removed fi-om the Ready Queue. The responsibility for

removal is in the JobDone routine. The JobDone routine calls the queue

function. Dequeue, which removes the top job from the Ready Queue. Then

38

A-Line Traps

I
Inhibit Interrupts

I
Adjust Stack for

No RTE

I
Fetch Job Number

< Dispatch ^

C

Execute Job

End Job)

Figure 3.5 A-Line Trap Handler

39

JobDone adjusts the stack, because it was called as a subroutine and will

not return to the caller. Control is then passed back to the Central Task

Processor and The Central Task Processor then continues on with the next

job.

procedure Dispatch
begin

switch(PresentJob)
begin

easel:
begin

DoJobOne;
JobDone;

end;

case 2:

begin
DoJobTwo;
JobDone;

end;
end;
end;

/* job dispatch table */

/* limited number of jobs version */

/* based on job from A-Line Trap */

/ * handle Job 1 */

/* After Job is completed */

/ * handle Job 2 */

/* After Job is completed */

Figure 3.6 Dispatch Routine

The decision to use A-Line traps in the operating system was made

early on in the design phase. The original idea was that with each job

assigned its own "instruction" a job could be very easily called from

anywhere in any task's code for execution. The job could be quickly decoded

and executed and control returned to the calling program with an return

from exception instruction. Another consideration was that there could be

a total of 1024 different jobs defined in one word values. This seemed to be

an advantage over the hmited user defined traps provided by the MC68000.

40

There are only 192 user defined traps for the MC68000 and their execution is

slower. As it turns out, the A-Line trap could be replaced by a simple table

of contents eliminating a great deal of unnecessary exception handling

code. A table of contents could be constructed from an array of starting

addresses with the array subscripts equal to the job numbers. The priority

would still be encoded in the job number. This will be discussed further in

the conclusions.

D. THE CYCLE INTERRUPT HANDLER

The Cycle Interrupt Handler is the routine which responds to the

external signalling of a new cycle or start of a frame. Depending on the

hardware configuration, the external interrupt is assigned an interrupt

priority. Based on this priority, a vector table in low memory points to the

routine which handles the interrupt. On the MC68000, there are seven

levels of interrupts available. In the microcomputer that the operating

system for this thesis was developed on, a Synertek SY6522 Versatile

Interface Adapter (VIA) was used to generate a level one interrupt to signal

the start of a new fi-ame.

Figure 3.7 illustrates the flow diagram for the Cycle Interrupt Handler.

The first and most important responsibility of the Cycle Interrupt Handler

is to store the data and address registers in the data structure for the job

that was interrupted. The data structure will be the top job in the Ready

Queue. After storing the registers, the interrupt bit of the job is set so that

the Central Task Processor will know that the interrupted job had started

execution.

41

Cycle Interrupt
Handler

C

Inhibit Interrupts

I
Retrieve Present
Job Information

I
Store Registers

in Interrupted Job

I
Set Interrupt Bit
in Interrupted Job

<
I

Purge

<
I

>
Schedule >

Central Task Processor)

Figure 3.7 Cycle Interrupt Handler

42

The Purge and Task Scheduler routines are called next. Purge is a

Ready Queue maintenance routine which removes the residue of jobs

which had to be executed in the last frame from the Ready Queue. The

Task Scheduler then enqueues all the new jobs for the new frame. Upon

completion of the Purge and Task Scheduler routines the Cycle Interrupt

Handler returns control to the Central Task Processor for execution of the

next job.

E. THE READY QUEUE

1. Heap Data Structure

The Ready Queue is represented as a heap implementation of a

priority queue. A heap is a restricted binary tree data structure. The Ready

Queue is a sequential array of pointers. The requirements for a sequence to

be a heap is that each parent must be less than either of its children. If r[l],

r[2], ... r[n] is a sequence of elements, the sequence is a heap if r[i] < r [2i]

and r[i] < r[2i+l]. Lower job numbers in the heap represent a higher

priority job.

2. Enqueue Routine

The flow diagram for the Enqueue module is shown in Figiire 3.8.

The Enqueue routine calculates a serial number to insure that if the job is

added to the queue twice in one frame it is treated on a first in-first out

basis. The serial number for each job is located in an array of serial

numbers indexed by job number. To make room for the serial number, the

job number, which is an A-Line, is shifted four bits to the left. The job is

43

urn J

Retrieve First Free Node and adjust
Next Free Node Global Variable

I
Enter Job Number and Frame
into Node Data Structure

I
Calculate Serial Number
for Priority Queue Entry

I
Siftup

I
>

r Return j

Figure 3.8 Enqueue a Job

44

then assigned the lowest position in the queue and the Siftup routine is

called.

A simplified Enqueue routine is shown in Figure 3.9 using data

structures and variables similar to those used in the actual Ready Queue.

The elements are added to the queue using the Enqueue routine.

procedure enqueue(A-Line : jobNumber)
begin
RQSize = RQSize + 1; /* increase RQ Size */

RQNode[RQSize].JobNumber = jobNumber; /* fill new node */

RQNode[RQSize].FrameStart = FrameCoimter;
siftup(RQSize); /* restructure heap */

end;

Figure 3.9 Enqueue - Add an Element to the Queue [Ref. 5 : pp. 243-245]

3. Siftup

The operation Siftup moves an element of the queue toward the root.

Siftup is restricted to a single path fi-om the leaf node to the root of the heap.

Because of this single path, it will require at most 0(log2 n) effort to add an

element to a queue of size n. Figure 3,10 shows the Siftup routine. The

element which is being "sifted up" is moved from the location "position"

toward the root until the heap conditions are satisfied.

Figure 3.11(a) shows a heap formed from a sequence of integers. The

integers in Figure 3.11(a) were added to the queue in the following order :

015,004 023,010,036. The numbers alongside the elements in Figure 3.11(a)

represent the array subscripts of the integer sequence. Figure 3.11(b) shows

the heap in Figure 3.11(a) after adding the element 012 using the Enqueue

and Siftup functions.

45

procedure siflup(int : position) /* Move element towards the Root */

begin /* from position until heap is satisfied */

var
int

:

j,k;

A_Line: jobNumber; /* jobNumber is Priority */

jobNumber = RQNode[RQSize].JobNumber; /* retrieve the job number */

RQNode[0] = RQNode[position]; /* save the present node */

k = position; /* save the present position */

j = position div 2;

while RQNode[j].JobNumber > jobNumber do
begin
RQNodePtr[k] = RQNodePtr[j]; /* find proper location */

k=j;
j=jdiv2;

end;

RQNode[k] = RQNode[0]; /* location found move element there */

end;

Figure 3.10 Siftup - Move an Element Towards the Root [Ref. 5 : pp. 243-245]

46

[3]

Figure 3.11(a) Heap Implemenation of a Priority Queue

[3]

Figure 3.11(b) Heap After Element 012 is Added

47

4. Dequeue Routine

To remove an element from the queue, the Dequeue routine is called.

Figure 3.12 shows a pseudocode routine for Dequeue. The Dequeue function

is illustrated in a flow diagram in Figure 3.13. The Dequeue function is a

relatively simple operation with the complex operations taking place in the

Siftdown routine.

The Dequeue routine shown does not return a value, however it could

return the node which was removed. Figure 3.14 shows the heap of integers

from Figure 3.11(b) after calling the Dequeue module. The element 004 was

removed and the heap restructured.

procedure dequeue
begin

/* Put a lower priority job on top of the heap */

RQNodePtr[l] = RQNodePtr[RQSize];
RQSize = RQSize -1

;

/* decrease RQ Size */

siftdown(l); /* restructure heap */

end;

Figure 3.12 Dequeue Top Element From the Queue [Ref. 5 : pp. 243-245]

5. Siftdown Routine

The function called Siftdown moves an element from the root towards

a leaf node. The process continues until the heap conditions are satisfied.

This process again requires at most 0(log2n) effort. Figure 3.15 shows the

Siftdown procedure.

The operating system designed for this thesis has modified the

pseudocode modules presented in the figures by using pointers to data

nodes in the actual heap rather than the nodes themselves. The reason for

using pointers is that it is easier to shift a single value up and down the tree

48

Dequeue

I
Retrieve Pointer to the
Highest Priority Job

I
Make This Job's Node
the Last Free Node

I
Assign Lowest Job Position

the Highest Priority Position

I
Decrement RQSize

I
Siftdown

c
I

>
Return J

Figure 3.13 The Dequeue Module

49

[3]

Figure 3.14 Heap After Element 004 is Dequeued

50

procedure siftdown(int : position) /* move node down to satisfy */

begin /* heap relative to its descendants */

var
int: ij;

RQNode save;

boolean finished;

i = position;

j = 2*position;

save = RQNode[position];
finished = FALSE;

while(j<= RQSize) and not finished do /* while there are children */

begin /* and position is not found */

/* if there are two children - select the smaller */

if(j < RQSize) and (RQNode(j].JobNumber > RQNode[j+l].JobNumber)
thenj=j + l;

/* if the position is found then finished */

if(save.JobNuniber <= RQNode|j],JobNumber)
then finished = TRUE;

else

begin /* if not - move everything up and try again */

RQNode[i] = RQNodelj];

j = 2*i;

end;
end;

RQNode[i] = save;

end;

Figure 3.15 Siftdown Routine Moves Elements Towards the Leaf Nodes
[Ref. 5 : pp. 243-245]

51

than to move around an entire data structure almost twenty times the size

of the pointer. However, using pointers without dynamic memory

allocation meant having to keep track of the free space in the block of

memory assigned to the nodes holding the data. Having to keep track of

free space in the queue was additional overhead but nowhere near the

overhead of moving entire nodes.

6. Purge Routine

Another requirement of the operating system is the need for a Purge

routine. Originally, it was thought that a job could wait in the queue until it

was processed and at the time of its processing it could be determined if the

job was still valid or not. However, every twenty milliseconds new jobs will

be added to the queue. Without a tremendous amount of memory, all the

jobs enqueued cannot be allowed to stay in the queue indefinitely. The

Purge routine purges or removes jobs that are no longer valid. Based on

whether or not the valid bit is set, the job is technically "dequeued" from the

middle of the queue. The job is dequeued because the Piirge and Dequeue

functions are so similar, but Dequeue is restricted to the top job in the

queue. Figure 3.16 shows the flow diagram for the Purge module.

The Purge routine shown in Figure 3.17 is essentially the same as the

Dequeue routine with the job being removed from the middle of the queue.

Figure 3.18 shows the same integer heap as in Figure 3.14, but the elements

012 and 015 have been purged and the heap restructured. Since the

Siftdown routine usually moves an element a lesser distance from its old

location than from the root to the leaf node, the effort required to purge a

single job from the queue is less than or equal to 0(log2n).

52

No

Increment
Index

Calculate Number
of Jobs Purged

(^ Return J

Make This Job's Node
the Last Free Node

I
Assign Lowest Priority Job

to the Purged Job's Position

I
Decrement RQSize

I
Siftdown >

Figure 3.16 Purge Module

53

procedure Purge
begin
var
int index,temp;

temp = RQSize;

for index =1 to index <= temp do
begin
if(JobNmnber.validbit)
begin
RQNodePtr[index] = RQNodePtr[RQSize];
/* put lowest job position in place of purged job */

RQSize = RQSize - 1

;

/* decrease RQ Size */

siftdown(index); /* restructure heap */

end
end;

end;

Figure 3.17 Purge Routine to Remove Jobs.

/* is Valid bit set? */

[3]

Figure 3.18 Heap after elements 01 2 and 01 5 have been Purged

The majority of the operating system's time is spent managing the

Ready Queue. The beginning of every minor cycle is used to schedule tasks

into the queue and to purge tasks no longer considered valid. The

scheduling routine calls Enqueue for each job it adds to the queue. The

54

Central Task Processor's dispatch module calls the Dequeue function upon

completion of a routine to remove it from the queue.

There are some smaller modules also associated with the Ready

Queue whose code is contained in the appendix. The modules full and

empty return a boolean based on the status of the queue. Create initializes

the queue by setting the size of the queue equal to zero and setting up the

next free node pointers. Create will be discussed in greater detail in the

initialization section.

F. THE TASK SCHEDULER

The Task Scheduler is responsible for the scheduling of jobs at the

beginning of each minor cycle. The Task Scheduler uses the Enqueue

routine to place jobs in the Ready Queue and then increments the frame

counter to indicate a new minor cycle. The Task Scheduler is called from

and returns to the Cycle Interrupt Handler. Figure 3.19 shows the flow

diagram for the Task Scheduler.

The Task Scheduler is responsible for determining which jobs are

scheduled for a particular frame. Jobs are classified by how often they must

be scheduled. The job numbers are located in arrays with an index, an

offset and a constant for the array used in determining which jobs will be

scheduled for a frame. There are four job arrays in the implementation of

the operating system. The four arrays are lists ofjobs to be scheduled every

frame, every other frame, every fourth frame or every eighth frame. The

frame counter is masked to determine an offset from the base pointer for

55

Return J

Calculate Job Masks

Repeat For Jobs
Scheduled Every Frame,
Every Other
Frame, Every
Fourth
Frame, etc < Enqueue (JOB) ^̂

V

Increment JOB_LIST_POINTER

<^^ Is JOB LIST POINTER^ ^ No
= MAX JOB?

Yes

Increment Frame Counter

''

(Return)

Figure 3.19 The Task Scheduler

56

each array. The masking of the frame counter is accompHshed by

performing a "bitwise and" operation with the frame counter and a

constant for the array. The constant used to mask the frame counter is the

frequency of how often the jobs are to be scheduled minus one. Along with

the offset for each array is the constant stride factor that is the job

scheduling rate. For example, jobs to be scheduled every fourth frame have

a constant stride of four. The constant stride for an array is added to the

offset computed from the Frame Counter and this sum is used as the index

for the array of the first job to be enqueued. The constant stride is added to

the index in a loop until the limits of the array or the maximum length of

the list is reached and the next array is processed. This is illustrated in

Figure 3.20.

A002

A013

Array ofiobs scheduled every other frame

Eyery2Times[0]

Eyery2Times[l]

Eyery2Tiines[2]

Eyery2Times[3]

A032

A038

Using the offset

calculated below,

the following jobs

are scheduled
in frame A5.

Mask for Jobs Scheduled Every other Frame = 1

Frame Counter = 00A5 Constant Stride = 2

Offset for this Frame is 0001 bitand 00A5 = 0001

Figure 3.20 Sample of the Job Mask

57

The "C" programming language is particularly useful for executing

routines like the Task Scheduler. In Figure 3.21, a pseudocode routine for

scheduling is shown. Comparing the routine in Figure 3.21 to the "C"

implementation located in Appendix A shows how much more elegantly

the scheduling routines can be coded in "C". Most languages do not have

the "bitwise and" capability and many cannot easily loop through an array

with a constant stride.

The scheduling of a set amount of tasks on a regular interval is essential

to the design of the operating system presented in this thesis. The types of

jobs and their execution length will determine which jobs and how many

jobs can be scheduled into a single minor cycle. A desired result is an equal

distribution of processing time over all cycles. It will be up to the

programmer who codes the job to determine whether or not a job can be

distributed over many minor cycles and thus form a major cycle for the job.

The length of the jobs to be scheduled and their execution frequency will

also have a direct impact on the length of the minor cycle. The length was

originally set at twenty miliseconds but this may be varied. There are other

factors that may affect how long the minor cycle can be, however, these

factors are mainly dependent on the application of the system.

G. INITIALIZATION

The kernel of the operating system is responsible for the system

initialization on power up. The peripheral chips which support the

microprocessor must all be initialized. There are several areas of memory,

specific to the microprocessor, which must be set up prior to execution of

58

procedure ScheduleO
begin

JobMask2 = FrameCounter bitand 1; /* Calculate job masks for */

JobMask4 = FrameCounter bitand 3; /* those tasks which are not */

JobMaskS = FrameCounter bitand 7; /* scheduled every frame */

index = 0;

while index < MAXEVERYl do
begin

enqueue(EverylTime[index]);
index = index +1

;

end;

index = JobMask2;
while index < MAXEVERY2 do
begui

enqueue(Every2Time[index]);
index = index +2;

end;

index = JobMask4;
while index < MAXEVERY4 do
beghi

enqueue(Every4Time[index]);
index = index +4;

end;

index = JobMaskS;
while index < MAXEVERY8 do
begin

enqueue(Every8Time[index]);
index = index +8;

end;

/* No offset required for these jobs */

/* enqueue those that are scheduled */

/* every frame (minor cycle). */

/* start at offset for this frame and */

/* enqueue those that are scheduled */

/* every other frame (minor cycle). */

/* start at offset for this frame and */

/* enqueue those that are scheduled */

/* every fourth frame (minor cycle). */

/* start at offset for this frame and */

/* enqueue those that are scheduled */

/* every eighth frame (minor cycle). */

FrameCounter = FrameCounter + 1 ; /* increment frame counter */

end;

Figure 3.21 Schedule Routine

59

the operating system's normal mode. The interrupt vectors and trap tables,

common to most microprocessors, must be filled with the proper memory

locations so that once the operating system has completed the set up

routine, all interrupts may be serviced.

Figure 3.22 shows a limited overview of the major tasks which must be

done upon start up. Most of these initialization routines are written in

assembly language to facilitate the access to the hardware and to speed up

the process. The operating system described in this thesis was developed on

a microprocessor system that the had already completed these vector

initializations using its own operating system. In order to test the

operation of the operating system developed in this thesis, some of these

vectors had to be replaced with vectors to the routines in the thesis

operating system.

The Ready Queue must be set up during the initialization phase. Aside

from allocating the space for the queue, the integer pointers in the nodes

have to be initialized. The nodes are an array of data structures and the

pointer to the next fi'ee node is the array subscript of the next free node. The

next free node variable in each node data structure is initially filled with the

next consecutive node. The free space is essentially a linked list with array

subscripts used for pointers instead of addresses. The storage for the array

of nodes and node pointers is allocated when the arrays are declared as

global variables in the "C" header file. The header file, located in

Appendix A, contains the global variable storage allocations for the entire

operating system.

60

rzitialize

I
Set Up

Hardware

I
Inhibit

Interrupts

I
Set up Trap

Tables

I
Initialize

Variable Storage

I
Initialize

Queue

Load Low
Level Jobs

I
Set Up Timer

I
Central Task
Processor

Figure 3.22 Initialization of the System

61

The array of pointers and the array of nodes must be tied together

during initiaUzation by setting the first pointer to be equal to the address of

the first node. The process which accomphshes the initiaUzation of the

Ready Queue is the routine Create shown in Figure 3.23 below.

procedure createO

begin
RQSize = 0; /* initialize queue to empty state */

for i= to i < RQMAXSIZE do /* initialize free node pointers */

RQNodes[i].NextFreeNode = i+1; /* using array indices */

RQNodePtr[0] = &RQNodes[0]; /* Point array of pointers to the */

firstFree = 1

;

/* contiguous block of memory */

lastFree = RQMAXSIZE - 1 ; /* set globals for first & last ft-ee */

end;

Figure 3.23 Create the Ready Queue

The next phase of initialization is to load a low level job, a small monitor,

into the queue. The monitor will never be removed firom the queue since it

never completes its execution and never returns back to a calling program.

The monitor is assigned the lowest priority of any job that could be

scheduled.

After loading the monitor, the timer is initialized and started and the

control of the program is given to the Central Task Processor for execution

of the first job in the Ready Queue. The timer used for this thesis was a

SY6522 Versatile Interface Adapter. The initialization consisted of

programming one of the two sixteen bit interval timers located on the

SY6522 to interrupt the microprocessor at the beginning of every minor

cycle.

62

In the development of a single microprocessor system, there are several

initialization steps which can be overlooked. The most significant

initializations to be done in a multi-processor system is the establishment of

inter-processor communications and synchronization of the processors.

These two vital tasks, communications and synchronization, are the

responsibility of the operating system kernel.

63

IV. PERFORMANCE MEASUREMENTS

A. BACKGROUND

The operating system was implemented on a MC68000 based personal

microcomputer to allow convenient testing of the modules. The Ready

Queue was written and tested first because it was believed that

manipulating and maintaining the Ready Queue would be the most time

critical area for the operating system. This belief was based on the fact that

at the beginning of every minor cycle the scheduler would have to enqueue a

preset number ofjobs and at the end of the minor cycle some jobs might

have to be purged.

The development hardware used to do the implementation and testing

was not optimal. Not only is a personal microcomputer not designed for

system development (lack of a dual bus system, separate exception tables,

hardware breakpoints, trace capture, etc.) but a personal microcomputer

usually has several features which slow the speed of the overall system. A

personal microcomputer also uses shortcuts in the hardware design to save

on the final cost of the product. There were several systemi tasks important

to the host microcomputer being carried out at the same time as the testing

of the operating system routines. The details of the hardware layout are in

Appendix C.

As an example to illustrate some of the hindrances in the execution of

the test routines, the microcomputer required a screen refresh every 16.67

milliseconds. A screen refresh is a level one interrupt and it was not

64

feasible to replace all level one interrupt routines with the routine for the

timer interrupt which shared a level one status. The computer used a

secondary vector table to route the level one interrupt routines to their

proper handlers. The Cycle Interrupt routine was vectored from the

secondary vector table.

Even though the test environment was not optimal, measurements were

taken for execution times of the different ready queue routines for

comparative purposes. Measurements were not taken of the routines

written in assembly language. The assembly language routines were so

short that a more accurate indication of the assembly language routine's

execution times could be calculated adding up the individual instruction

times. The individual instructions execution times are available in the

Appendix of Reference [7]. The minor cycle used to test the operating

system was sixty milliseconds. The extra time was required due to the

operating environment.

The efficiency of the compiler is another factor to consider when

evaluating the execution times of various routines. The time for execution

of a routine may vary for different compilers. A routine may execute at a

slower speed if the compiler does not optimize the final object code by

making several compilation passes and stripping dead code. The compiler

used in the generation of the operating system in this thesis was the Mac

C"^^ compiler by Consulair Corporation. This compiler should not be

considered optimal. It makes only one pass of4;he "C" code for compilation,

one pass for preprocessor commands and one pass for assembling in-line

assembly language code.

65

There were benefits in developing the operating system on a

microcomputer. One benefit is that the software could be tested on a proven

hardware system eliminating the conflicts of bugs fi:om both hardware and

software. Another benefit is that a run time library need not be built in

order to use the higher level routines in "C", such as input fi:-om the

keyboard and output to the screen. The operating system was developed to

be used on another MC68000 system but an emphasis was placed on

portability .

Many of the routine tasks that would normally have to be coded, as in the

initialization routines, had already been accomplished by the personal

microcomputer's own operating system. The microcomputer environment,

while not optimal for evaluation of the final product, can be used in the

development of systems software.

B. COMPARISONS

1. Scheduling

The Scheduler is called at the beginning of every minor cycle. The

Scheduler then calls the routine Enqueue several times depending on how

many jobs are being scheduled in the frame. The execution time of the

scheduler is directly related to the efficiency of the Enqueue routine. Other

than enqueueing jobs, the Scheduler's only other tasks are to calculate the

job offsets for each job list and increment the Frame Counter.

Since the order of magnitude for a queue insertion is 0(log2 n), the

order of magnitude for inserting n items in the queue should be 0(n log2 n).

66

The graph in Figure 4.1 shows the execution times for loading the ready

queue using the Schedule routine three different times. The schedule

routine inserted eight jobs per minor cycle into the ready queue. The queue

was essentially full after six minor cycles since no execution of tasks or

purges were taking place. The time to schedule eight jobs does not appear to

increase substantially as the queue gets full, but it does increase.

Tiines For Schedule Routine
3.00

] Runl

Run 2

Run 3

0.00

Number ofTiines Schedule Routine Called

Figure 4.1 Schedule Routine Performance

The mmibers used to generate Figure 4.1 are found in Appendix D. It

would appear that it takes on the average approximately 2.5 milliseconds to

schedule eight jobs into the ready queue. Not allowing for the mask

calculations or incrementing the frame counter, it takes about 0.3

milliseconds to schedule one job into the ready queue. This is not an

67

acceptable figure for a twenty millisecond minor cycle. However, the

measurements taken should be considered relative for comparison to other

measurements taken on the same system, due to the environment, and do

not reflect the true performance of the operating system in a dedicated

system.

2. Purging

Purging of the Ready Queue must take place prior to the scheduling of

new tasks in a new minor cycle to make room for the new jobs. The purge

operation will usually not remove the same number of jobs each minor

cycle since not all jobs in the Ready Queue are purgeable. There may be a

minor cycle in which two or more items are purged. The most likely

occurrence is the case of one or no jobs purged per minor cycle,

A major factor affecting the execution speed of the purge routine is

the location of the job in the heap which is the Ready Queue. A job which is

higher in the Queue with a higher priority and is closer to the root will take

longer to purge than a job located in a leaf node. The location dependence of

purge time differences is due to the siftdown routine called to restructure

the heap. The job from the lowest location in the heap is placed in the

location of the old purged job, therefore, the closer the purged job to the leaf

node, the less "sifting down" that has to be done to put the heap back in

order.

Since there are so many factors affecting the execution time of the

purge routine, an in-depth analysis was not done. It was believed that due

to the nature of the environment, the measurements would not be accurate

enough to be of any significance. The factors involved in a call to the Purge

68

routine include the size of the Ready Queue when Purge is called and the

number of purgeable jobs in the queue and their locations. It should be

noted that the bound on the performance of a single Purge is of 0(log2 n),

the same as a dequeue or a purge of the top element in the queue.

3. Enqueueing

The performance of a single insertion into the queue is of 0(log2 n).

The main factors affecting the execution time of the enqueue routine are the

size of the queue and the priority of the job being inserted. Only a single

entry at a time is made into the queue. The Enqueue routine calls the Siftup

routine to restructure the queue after a new element has been added. It

should be noted that the order of a single insertion is an upper bound to the

execution time of a single insertion. If the new element happens to be the

lowest priority job in the queue then no restructuring will be necessary and

the time to execute the Enqueue routine will be less than 0(log2 n).

Since the execution time of a single queue insertion is dependent on

the size of the queue as well as the priority of the job being inserted,

consideration of the job's priority must be taken into account when deciding

which jobs will be scheduled into the different minor cycles. If many high

priority jobs are enqueued at one time, it could conceivably slow the

Scheduler down so that there would be as much time left in the minor cycle

for job execution.

The performance of the enqueue routine is encompassed by the

performance measurements of the the scheduler. Measurements taken of

individual enqueueing operations would be meaningless unless the heap

was shown before and after each insertion and the job placement in the

69

queue was monitored carefully. Even keeping track of the queue structure,

there are the other variables of the queue size and the priority of the job to

be inserted.

4. Dequeueing'

The Dequeue routine is not called until the job that is being removed

from the queue has completed execution. Dequeue calls the Siftdown

routine to restructure the heap and since the lowest priority job is placed in

the highest priority position, the time to perform a removal from the queue

is always 0(log2 n). Therefore, the main factor in affecting the performance

of the Dequeue routine is the size of the queue. The illustration of the

Dequeue routine's dependency on the size of the queue is illustrated in

Figure 4.2. A logarithmic interpolation curve is used in Figure 4.2 to

emphasize the log relationship between the performance of the Dequeue

routine and the size of the queue.

C. CONCLUSIONS

The operating system was not tested in an environment that allowed for

an accurate performance evaluation. The routines that were tested

appeared to do relatively well. The times are inflated due to the conditions,

however, the times appear to reflect the proper operation of the queue

management routines.

70

Queue Performance for a Dequeue

n - Number of Elements in the Queue

Figure 4.2 Performance of the Dequeue Routine

71

V. CONCLUSIONS

A. SUMMARY OF RESULTS

The principal goal of this thesis was the development of a kernel for a

real time fault tolerant operating system. The modules which make up the

operating system kernel were designed and tested individually before being

combined to form the bulk of the operating system kernel. The objectives of

the thesis were met to the extent that an operating system kernel was

designed for a real time fault tolerant environment and implemented on a

MC68000 based microcomputer.

The real time requirement was described by the ability of the operating

system to respond to events as they occurred. The interrupt handler of the

operating system meets this requirement. If a real time request interrupts

the processor with a high enough priority to be placed on the top of the

Ready Queue, it is serviced immediately. There are other external

influences which will need to be serviced in real time but that are not

handled by the interrupt handler.

A major requirement which must be addressed before this operating

system can be implemented in a multiprocessor environment is the ability

to communicate with the other processors. This will be an operating system

kernel function with real time requirements.

The use of the A-Line trap to monitor the execution of all jobs was

originally intended to enhance the fault tolerance of the operating system

without impeding operating system efficiency. The assignment of an

72

A-Line and priority to each routine ensures that the operating system is

aware of the status of all active jobs. However, the combination of the

Central Task Processor and the A-Line trap results in redundant

management. The A-Line trap actually slowed the performance of the

operating system by adding extra instructions to handle the A-Line

exception in order to execute a job. A table of contents could be used with the

same effect as the A-Line trap and with better efficiency. The jobs' starting

addresses could be located in a table of contents and still be prioritized by job

number in the table. Using a table of contents eliminates the need to go

through the A-Line trap handler.

The use of "C" is required to maintain portability between systems but

the object code produced by the "C" compiler may not be optimal. Most "C
"

compilers contain a feature that allows the generation of an intermediate

assembly language file during compilation. The intermediate assembly

language code could be optimized for time consuming operations performed

by the operating system. The reason for optimization is that many

compilers inherently include dead code and duplicate instructions in the

object code created as a result of the compilation. The removal of the dead

code from the intermediate assembly language file should help the

operating system achieve better performance.

A hardware system for the design and implementation of the operating

system is required. Without the intended microcomputer system available

for the operating system, many routines dealing with hardware specific

functions of the operating system could not be written and tested.

73

B. RECOMMENDATIONS FOR FURTHER RESEARCH

The operating system kernel developed in this thesis will need to be

expanded upon as more sophisticated functions are required. The ability to

send and receive messages between processors in a multiprocessor system

will require the support of input/output functions. The addition of a full

function input/output capability and additional processors in the system

will produce a requirement for semaphores to monitor the use and

availability of the input/output resources. The addition of semaphores

means the requirement for an additional queue for jobs which are waiting

for blocked resources. There will then be a requirement for a Ready Queue

and a Waiting Queue.

Further research into the operating system will require a proper

development station. The personal computer used to develop the operating

system kernel was not a true development environment. A hardware

design that is intended for a real time fault tolerant environment should be

used to test future versions of the operating system. The use of the proper

hardware will help to increase the accuracy of the results for the test and

evaluation of the operating system routines.

74

APPENDIX A

C AND ASSEMBLY LANGUAGE SOURCE CODE LISTINGS

This Appendix contains the source code modules required for the

operating system. The Hstings start with the header file which was

included in each source code module. The "Main" function, required in a

C language program, is in the file OSTest.c and has been made as generic

as possible considering the development environment. All the other

listings follow. A block diagram illustrating the exection flow between

modules is loacted in Figure A.l

The C programming language was commented as much as possible

to enhance readability. The standard C as professed by Kernighan and

Ritchie in Reference [6] was used to insure portability. The modules are

presented in the approximate order in which they are used. Each section

denoted by a heading of a module name is a different file, compiled

separately and later linked together.

The file OSTest.c was modified to test each module as it was written.

Also some files were modified to use the SY6522 timer to time the

performance of the routine and gather the data in Appendix D.

75

^ ^

^

^ ^^ ^

a;

a"
C

a*
0)

Q

0)

o

CZ2

C/2

«^ 'O

5 a .

S g-Q
<u r o^ « o^

. -u
' fl

^—^

G
o
Q
o
•-3

OS

&
CO

•l-H

Q
o
s

I
o

CO

• I—

(

u
0)

Oh

O

0)

a

76

***************** p^ LINETEST H *****************

/* A-linetest.h, header file for Operating System Global Variables */

#include "C_Heads.h" /* include Macintosh stdio.h pre-compiled */

#define
#define

TRUE
FALSE

1

#define RQMAXSIZE 50 /* max size of ready queue */

/* These constants are the max number ofjobs that can be scheduled - */

#defme MAXEVERYl 5 /* - every frame */

#defme MAXEVERY2 4 /* - every other frame */

#defme MAXEVERY4 8 /* - every fourth frame */

#define MAXEVERY8 16 /* - every eighth frame */

#define MAXJOBNUMBER 1023 /* max total number ofjobs = 03FF */

struct RQInfo /* the Ready Queue Node */

short JobNum; /* A-line trap number */

long FrameStart
>

/* Frame Scheduled in */

short SerialNum; /* Index for TOC and Q */

int NextFreeNode; /* index number of next */

long DataO; /* all Data and Address */

long Datal; /* Registers stored here */

long Data2;
long DataS;
long Data4;
long DataS;
long Data6;
long Data?;
long AddrO;
long Addrl
long Addr2
long AddrS
long Addr4
long AddrS
long Addr6
long

);

Addr? /* stack points at SR and PC */

#define RQNode struct RQInfo /* define Node */

typedefRQNode *RQPtr; /* define pointer to a node */

77

#ifdef MAIN /* if compiling the mainO program */

int

RQNode
RQPtr
unsigned char
int

int

unsigned long
short

short

short

short

unsigned long
extern
long
short

long

i,j,k,l,m; /* general indices list */

RQNodes[RQMAXSIZE]; /* make space for Nodes */

RQNodePtr[RQMAXSIZE]; /* make space for pointers */

SerialList[MAXJOBNUMBER];/* serial number array */

RQSize /* The size of the ready queue */

firstFree,lastFree; /* for keeping track of free space */

JobMask2,JobMask4,JobMask8; /* masks for scheduler */

EverylTime[MAXEVERYl];
Every2Time[MAXEVERY2];
Every4Time[MAXEVERY4];
Every8Time[MAXEVERY8];
FrameCounter;
RQPtr serveO;

GlobalRegs[l 6],MacTraps;
TopJob,PresentJob;
Regs,01dJob;

*/

*/

*/

*/

/* These are the arrays of
/* job numbers, classified

/* into lists of how often
/* they are scheduled.
/* global 32 bit value */

/* if serve returns a value */

/* These variables were */

/* for use in ASM code */

#else /* all global variable storage space is defined in the main file */

extern int i,j,k,l,m;

extern RQNode RQNodesG;
extern RQPtr RQNodePtrG;
extern unsigned char SerialList[];

extern int RQSize,
extern int firstFree,lastFree;

extern unsigned long JobMask2,JobMask4,JobMask8;
extern short Everyl Time[] ,Every2Time[]

;

extern short Every4Time[] ,Every8Time[]

;

extern unsigned long FrameCounter;
extern long GlobalRegs[],MacTraps;
extern short TopJob,PresentJob;
extern long Regs,01dJob;

#endif

:l:4::i::(::t:*:t:**** +* +**+ O^'PTTCJ'T' f^ + + + *+************

/* This program contains the mainO routine which is responsible for the */

/* initialization of the queue and all other global variables. It is */

/* responsible for the set-up of the operating system and the loading of */

/* the monitor prior to the calling of the Central Task Processor. While */

/* it contains a never ending loop, this loop will never be executed */

/* more than once. Once control is passed to the Central Task Processor, */

/* it never returns here. */

78

#define MAIN
#include "A-linetest.h" /* include header file */

InitSystemO

{

FlushEvents(everyEvent); /* cleans out Event Queue on Macintosh */

createO;

FrameCounter = 0;

SetUpTimerO;
InitALineO;

}

/* Creates the ready queue */

/* Insure frame counter starts at zero */

/* Set up SY6522 VIA for cycle interrupts*/
/* Load our trp handler in low memory */

mainO
(

InitSystemO;

enqueue(0xF003);

#asm
XREF doSchedule

LEA doSchedule,AO
MOVE.L A0,$192
#endasm

/* do initialization */

/* enqueue the monitor */

I'' in-line assembly allowed */

; Loads our routine into dispatch table

; Level 1 Interrupt - secondary table

while (TRUE) {

CTPO;
)

/* endless loop */

/* Let Central Task Processor take over */

/*end of mainO */

SetUpTimerO

#asm
VIA
vIER

EQU $1D4 ; VIA base address [pointer]

EQU $1C00 ; INT. ENABLE REG.

MOVEA.L VIA,AO
BCLR #6,vIER(A0)

#endasm
}

; disable timerl interrupt until ready

:f::)cH<H«%4:^*4:^>i«4:^H<%4:4: (""PP AmVT **** + * +**** + +***

/* The Central Task Processor was written entirely in assembly */

79

/* for ease of accessing the A-Line trap and for speed. */

INCLUDE M68KLIB.D ; required assembly library

XREF RQNodePtr ; only external variable

CTP:
MOVE.L RQNodePtr+4(A5),A0 ; retrieve node pointer

MOVE.W (AO),DO ; retrieve job number
AND #$800,D0 ; test to see ifnew job or not
BEQ newjob ; if new use A-line

MOVEM.L 12(A0),D0-D7/A0-A7 ; restore regs

RTE ; continue interrupted job

newjob:
LEA Atrap,Al ; Load address space
MOVE.W (A0),(A1) ; move A-Line there

Atrap:
DC.W $4E71 ; Reserved word for A-Line

END

***************** READYO C *****************

/* ReadyQ.c - This module includes all the functions required */

/* for set up and maintenance of the ready queue. */

#include "A-linetest.h" /* includes all global variables */

/* Enqueue */

enqueue(jobNum) /* add a job to the queue */

short jobNum;
{

unsigned short index, shifted;

if[RQSize == RQMAXSIZE) /* normally would want to */

return; /* set an alarm here */

RQSize-i-=l; /* increase RQ Size */

RQNodePtr[RQSize] = &RQNodes[firstFree]; /* get free space for job */

firstFree = RQNodes[firstFree].NextFreeNode; /* change first free space */

RQNodePtr[RQSize]->JobNum = jobNum; /* Load Job Nimiber and */

RQNodePtr[RQSize]->FrameStart = FrameCounter; /* Frame Number */

index = (jobNum & OxOSFF); /* Index for serial number list */

80

shifted = index « 4; /* put jobnum in High byte 1/2 */

/* Serial number = I Jobnum I serial numi */

RQNodePtr[RQSize]->SerialNum = SerialList[index] + shifted;

SerialList[index] +=1; /* inc serial num for that job*/

siftup(RQSize); /* Move it towards Root */

}

/* - Serve */

RQPtr serveO /* Remove the top job from the queue. */

{

RQPtr JobPtr;

short index, shifted;

int next;

JobPtr = RQNodePtr[l]; /* Retrieve the highest Priority */

next = JobPtr - &RQNodes[0]; /* make the now vacant space... */

RQNodes[lastFree].NextFreeNode = next; /* the last free space */

lastFree = next;

RQNodePtr[l] = RQNodePtr[RQSize]; /* Put low job at the top */

RQSize-=l; /* decrease RQ Size */

siftdown(l); /* restructure heap */

return(JobPtr);

/* Create -*/

createO /* Sets up the global variables for the ready queue. */

{

RQSize = 0; /* Initialize queue to empty state */

for(i=0;i<RQMAXSIZE-l;i++) /* Initialize free node pointers */

RQNodes[i].NextFreeNode = i+1;

RQNodePtr[0] = &RQNodes[0]; /* Point array of pointers to the */

firstFree = 1

;

/* contigous block of memory */

lastFree = RQMAXSIZE - 1

;

/* set globals for first & last free */

}

/* Siftup */

siftup(pos) /* Move towards Root */

int pos;

{

int j,k;

short serialnum;

81

serialnum = RQNodePtr[pos]->SerialNum; /* retrieve the serial number*/
RQNodePtr[0] = RQNodePtr[pos]; /* save the present node pointer */

k = pos; /* save the present position */

j = (int)(pos/2); /* get the first parent's postion */

while(RQNodePtr[j]->SerialNum > serialnum)

{

RQNodePtr[k] = RQNodePtr[j]; /* move up one place */

k = j; /* and compare the child */

j = (int)(j/2); /* with its' parent */

}

RQNodePtr[k] = RQNodePtr[0]; /* location found move element there */

)

/* Siftdown */

siftdown(pos) /* move node down to satisfy the */

int pos; /* heap relative to its descendants */

{

int i,j;

RQPtr save;

char finished;

i = pos; /* will want to start with parent */

j = 2*pos; /* and start with one of its children */

save = RQNodePtr[pos]; /* save new node until finished */

finished = FALSE; /* boolean to know when we're done */

while((j<= RQSize) && (Ifinished)) /* while there are children */

{

/* if there are two children - select the smaller */

ifi:(j<RQSize) &&(RQNodePtr[j]->SerialNum > RQNodePtr[j+l]>SerialNum))

/* if the position is found then it's finished */

iflsave->SerialNum <= RQNodePtr[j]->SerialNum)

finished = TRUE;
else

/* if not - move next node up and try again */

{

RQNodePtr[i] = RQNodePtr[j]; /* switch places */

i = j; /* look at next parent */

j = 2*i; /* and its' children */

}

}

82

RQNodePtr[i] = save; /* Place new node in its proper place */

}

/* Empty */

emptyO /* test for an empty queue */

{

int RQempty;

iflRQSize == 0)

RQempty = TRUE; /* either its empty */

else

RQempty = FALSE; /* or it isn't */

return(RQempty); /* return boolean tj^pe answer */

}

/* Full */

fullO /* test for a full queue */

{

int RQfull;

ifCRQSize == RQMAXSIZE)
RQfull = TRUE; /* either its full */

else

RQfull = FALSE; /* or it isn't */

return(RQfull); /* return boolean type answer */

}

/* Purge */

Purge
{

int next,temp;

purgeNum = 0; /* initialize number of jobs purged this time */

temp = RQSize; /* needed for index */

for(i=l ;i<= temp;i++) /* Search only through actual size of queue */

{

iflRQNodePtr[i]->JobNum & 0x0400) /* ifjob is purgeable */

(

next = RQNodePtr[i] - &RQNodes[0]; /* making new free space */

RQNodes[lastFree].NextFreeNode = next;

lastFree = next; /* make it the last free */

83

RQNodePtr[i] = RQNodePtr[RQSize]; /* Put lowest job in its place */

RQSize-=l; /* decrease RQ Size */

sifldown(i); /* restructure heap */

}

purgeNum = temp - RQSize; /* how many jobs were purged? */

)

***************** SCHEDULK C *****************

/* Schedule. c contains the routines for the Cycle Interrupt Handler */

/* and the scheduler. */

#include "A-linetest.h" /* include global variables */

/* doSchedule is also known as the Cycle Interrupt Handler.
/* This piece of code is the beginning of every new frame.
/* On the Macintosh, this routine is in the level interrupt
/* table which is shared by several other devices.

*/

*/

*/

*/

doScheduleO

#asm
XREF Schedule,CTP

MOVE #$2700,SR ; inhibit interrupts

MOVE.L RQNodePtr+4(A5),A0
;
get current job info

MOVEM.L D0-D7/A0-A7,12(A0) ; store current registers

MOVE.L 01dJob(A5),Al
BTST #6,$EFFBFE ; is it timerl?
BNE timerl

;
yes do it

JMP (Al) ; OldJob is an Apple routine

timerl

:

MOVE.W (AO),DO
;
get top job number

OR #$0800,D0 ; Set rupt bit

MOVE.W DO,(AO)
;
put new job num back

JSR Purge ; clean out Queue
JSH Schedule ; schedule new frame tasks

JMP CTP
RTS

#endasm

}

ScheduleO
(

/* routine to schedule jobs */

84

if(RQSize == RQMAXSIZE)
return; /* Would normally trip an alarm */

JobMask2 = (FrameCounter & 1); /* calculate job masks for those tasks */

JobMask4 = (FrameCounter & 3); /* which are not scheduled every frame */

JobMaskS = (FrameCounter & 7);

for(i=0; i<MAXEVERYl; i++) /* enqueue those that are scheduled */

enqueue(EverylTime[i]); /* every frame */

for(i=JobMask2; i<MAXEVERY2; i+=2) /* enqueue those that are */

enqueue(Every2Time[i]); /* scheduled every other frame */

for(i=JobMask4; i<MAXEVERY4; i+=4) /* enqueue those that are */

enqueue(Every4Time[i]); /* scheduled every fourth frame */

for(i=JobMaskS; i<MAXEVERY8; i+=8) /* enqueue those that are */

enqueue(Every8Time[i]); /* scheduled every eighth frame*/

FrameCounter +=1; /* increment frame counter */

}

***************** A LINES C *****************

/* A-Line Trap Handler */

#include "A-linetest.h" /* Include file for global variables and defs */

/* InitALine actually replaces the F-Line Trap Handler on the Macintosh*/
/* The A-Line Trap is used on the Macintosh, however the end result is */

/* the same as they are both unimplemented instructions. */

InitALineO
{

#asm
MOVE.L $2C,MacTraps(A5) ; Save old A-Line Handler
LEA ALines,AO ; Load Trap Handling Routine
MOVE.L A0,$2C

#endasm

}

/* This is the actual routine vectored to ater the execution of a trap */

/* Since there will never be an RTE from this routine the stack must */

/* be adjusted prior to leaving the routine. */

85

ALinesO
{

/* A-Line Trap Har

#asm
XREF Dispatch

MOVE #$2700,SR
MOVEA.L $02(A7),A2
MOVE.W (A2),D2
ADDQ.L #$6,A7
ANDI.L #$03FF,D2
MOVE.W D2,PresentJob(A5)
JMP Dispatch

#endasm

insure no interruptsrupts
fetch PC and its contents
Store trap in D2
adjust stack

get last 10 bits of word-job number
store job number for dispatch table

go to dispatch table

}

/* The Dispatch Table is where the actual Job is vectored to.

/* The job also will return here upon completion. */

DispatchO /* job dispatch table */

/* limited number of jobs version */

switch(PresentJob)

{

/* based on job from A-Line Trap Handler */

case 1

:

JoblO;
JobDoneO;

break;

/ * handle Job 1 */

/* After Job is completed */

case 2:

Job2();

JobDoneO;
break;

/ * handle Job 2 */

/* After Job is completed */

case 3:

monitorO;
break;

/ * handle Job 1 */

/* Monitor is never completed */

}

default:

JobDO;
JobDoneO;

break;

/ * handle all the other jobs */

/* After Job is completed */

86

/* The JobDone routine is responsible for removing the job from the */

/* ready queue by caUing the Serve function. This routine should not */

/* be interrupted. Control is passed on to the CTP after completion. */

JobDoneO
{

#asm
XREFCTP,Serve

MOVE
JSR
ADDQ.L
JMP
#endasm

#$2700,SR
Serve
#$4,A7
CTP

inhibit interrupts until done
Remove top job from ready queue
adjust stack since there is no RTS
Go back to CTP for next job

}

/* The following are small sample jobs used to test the OS */

JoblO
{

#asm
MOVE
MOVE.
MOVE.
#endas
}

.B

.B

im

#$2000,SR
$EFE9FE,$FFCF7
$EFEBFE,$FFCF6

required of all jobs written
read 6522 timer count lower byte

read 6522 timer count HIGHER byte

Job2()

{

#asm
MOVE
MOVE.B
MOVE.B
#endasm
}

JobDO

#$2000,SR ; required of all jobs written
$EFE9FE,$FFCF9 ; read 6522 timer count lower byte
$EFEBFE,$FFCF8 ; read 6522 timer count HIGHER byte

/* NULL Job */

}

87

APPENDIX B

SOURCE CODE LISTSINGS FOR A PARTIAL MONITOR

This Appendix contains the source code modules for a partial

monitor. The monitor was used as a low level job to test the operating

system. It is a partial monitor in that it can only do memory display and

memory modify. A full function monitor should aslo be able to display and

modify registers, set breakpoints and allow the running of another

program using a "Go" routine. All the functions which were not

implemented are located in a stub module to complete the linking process.

This should make the further refinement of the program easier as well.

The listings start with the Main module which is the entry point into

the monitor. The monitor was written in C to maintain portability. The C

programming language was commented as much as possible to enhance

readability. The modules are presented in the approximate order in which

they are used.

88

/* - - MONITOR.H monitor header file/

#define CONTINUE
#define HEX ERR
#define MODIFY
#define BS
#define CR
#define NULL
#define SPACE

V

1 /* CONTINUATION FLAG */

2 /* HEX CONVERSION ERROR */

3 /* MEMORY MODIFY FLAG */

0x08 /* ASCII CODE FOR BACKSPACE */

OxOD /* ACCII CODE FOR RETURN */

0x00 /* ASCII CODE FOR NULL */

0x20 /* ASCII CODE FOR SPACE */

#ifdef MAINMON

char BUFFIN[255]; /* 255 char input buffer */

int COUNT;
char M0NSTAT[3]; /* RESERVE 3 BYTES FOR STATUS */

long START_ADDRESS
long END_ADDRESS; /* RESERVE LONG WORDS FOR ADDRESSES */

long DATA; /* DATA FOR MEM MODIFY */

/* messages */

char *BKPTMSG = "BREAKPOINT TRAP AT ";

char *ERRMSG = "ERROR RE-ENTER";
char *HEXMSG = "HEX CONVERSION ERROR...RE-ENTER";
char *ILLMSG = "ILLEGAL INSTRUCTION TRAP";
char *MONMSG = "68000 MONITOR VO.OXrWRITTEN IN C BY BOB

VOIGTXr";
char *REGERR = "REGISTER CONTENTS ERROR RE-ENTER";

char *commands[] = /* command string */

{"BKPT","RCHG","N0BK","REG1","QUIT","NL",
"BK","GO","MD","MM"};

#else

extern char BUFFIN[],MONSTAT[];

extern int COUNT;
extern long BKPTAB[],START_ADDRESS,END_ADDRESS;
extern lonff DATA*
extern char *BKPTMSG,*ERRMSG,*HEXMSG;
extern char *ILLMSG,*MONMSG;
extern char *REGERR,*REGMSG[],*commands[];
#endif

89

/* MAIN */

/* MAIN IS THE ENTRY POINT INTO THE MONITOR. */

#define MAINMON
#include "monitor.

h"

monitorO
{

for(i=0; i<8;i++)

MONSTAT[i] = 0;

MESSAGE(MONMSG);

while(TRUE)
{

printf("\r$ ");

gets(BUFFIN);
putchar(CR);
CMD_DECODE();
}

/* include header file */

/* Clear Monitor Status */

/* Output opening message */

/* Print Prompt "$" */

/* Enter monitor */

/* Decode input */

}
/* end main */

/* CMD_DECODE */

/* THIS PROGRAM DECODES COMMANDS */

/* FROM THE COMMAND LINE */

CMD_DECODE()
{

char match;

for(i=0;i<4;i++) /* Convert all input commands to upper case */

BUFFIN[i] = toupper(BUFFIN[i]);

for(i=0;i<5;i++) /* look for 4 letter commands first */

{

match = strncmp(BUFFIN,commands[i],4);
/* C fiinction comparing first 4 letters of command string */

iflmatch == 0)

{

switch(i)

{

case 0:

BKPTO;
break;

/* if there's a match go to that routine */

/* case numbers are indices of command string */

90

case 1

:

REGCHANGO;
break;

case 2:

NO_BKPT();
break;

case 3:

REGK);
break;

case 4i

ExitToShelK); /* QUIT */

break;

}
/* end switch */

break;

}
/* end if strncmp */

} /* end for */

if(match != 0) /* if no match in 4 letters */

{

for(i=5;i<10;i+4-) /* try two letter commands */

{

match = strncmp(BUFFIN,commands[i],2);

iflmatch == 0)

{

switch(i)

(

case 5:

NLO;
break;

case 6:

BKPT_LIST();
break;

case 7:

GOO;
break;

case 8:

MEM_DISPLAY();
break;

91

Start_ADD[i] = BUFFIN[j]; /* get string representation */

i++;

}

sscanflStart_ADD,"%X",&START_ADDRESS); /* convert string to hex */

if(BUFFIN[j] == NULL) /* exit with return address = */

return;

i = 0;

while(BUFFIN[j] != NULL) /* string is terminated by a NULL */

{

ifl!ishex(BUFFIN[j])) /* check for proper hex format */

(

MESSAGE(HEXMSG); /* not proper format */

MONSTAT[HEX_ERR] = TRUE; /* exit with error message */

return;

}

End_ADD[i] = BUFFIN[j]; /* get string representation of data */

i++;

)

iflMONSTAT[MODIFY]) /* if modify - convert to data */

sscanf(End_ADD,"%X",&DATA);
else /* else convert end address */

sscanfrEnd_ADD,"%X",&END_ADDRESS);

}
/* end get_addr */

ishex(c) /* routine to check if < c < F - a hex number */

char c;

{

if((c >= 'a' && c<= 'f) I 1 (c>= 'A && c<= 'F') I I isdigit(c))

return(TRUE);
else

return(FALSE); /* returns a boolean true or false */

}

/* MEM_MODIFY */

/* THIS PROGRAM MODIFIES THE CONTENTS OF */

/* THE SPECIFIED MEMORY LOCATIONS */

92

MEM_MODIFY()
{

MONSTAT[MODIFY] = TRUE; /* Set modify flag */

MEM_DISPLAY(); /* Display memory */

MONSTAT[MODIFY] = FALSE; /* Clear modify flag */

/* —-- MEM_DISPLAY */

/* THIS PROGRAM DISPLAYS THE CONTENTS OF */

/* THE SPECIFIED MEMORY LOCATIONS */

MEM_DISPLAY()
(

unsigned char *byte,*databyte,*address,c;

long *temp;

MONSTAT[HEX_ERR] = FALSE; /* Clear errors */

GET_ADDR(); /* Convert address to hex */

if(MONSTAT[HEX_ERR]) /* Was there a hex error ? */

return; /* yes, so exit */

/* make starting address a pointer to a b)d:e */

byte = (unsigned char *)START_ADDRESS;

if (END_ADDRESS == 0) /* if no end address then just Hst one row */

END_ADDRESS = START_ADDRESS;

iflMONSTAT[MODIFY]) /* if modifying data */

{

databyte = (unsigned char *)&DATA; /* data */

address = byte; /* use dummy variables */

for (i=0;i<4;i++)

{

if((*databyte && OxFF) != 0)

*address++ = *databyte++;
else

*databyte++;

}

}

/* display address with changes */

for(j=START_ADDRESS; j<= END_ADDRESS; j+=OxlO)
{

iflKeyReadyO) /* MAC specific routines */

(

93

c = inKeyO; /* a backspace can stop the display */

if(c == BS)
return;

}

printfl"\r%-8X "J); /* print start address for the row */

for(i=0;i<8;i++) /* print 8 groups of 4 bytes with spaces between */

{

ifl*byte == 0) /* if whole byte is zero - print zeros */

{

printfl"00"); /* need to fill in zeros with real zeros on screen */

byte++; / get next byte */

}

else

{

if((*byte & OxOOFO) == 0) /* only upper nibble is a zero */

printfl"0");

printf("%lX",*byte++); /* print contents of byte */

}

if(*byte == 0) /* if whole b3^e is zero - print zeros */

{

printfl"00 "); /* these zeros have a space after them - formatted */

byte++; / get next byte */

}

else

{

if((*b3i^ & OxOOFO) == 0) /* if upper nibble is zero again */

printfl"0");

printfl"%lX ",*byte++); /* print byte with a space after it */

}

}

}

}
/* end MEM_DISPLAY */

/* OUTPUT_BYTE */

/* THIS PROCEDURE CONVERTS A BYTE INTO 2 ASCII */

/* CHARACTERS AND SENDS THE CHARACTERS TO */

/* THE CRT DISPLAY */

OUTPUT_BYTE(byte)
char byte

(

printf("%2X",byte); /* convert and print */

}

94

/* MESSAGE - */

/* THIS PROCEDURE OUTPUTS MESSAGES TO THE CRT SCREEN */

MESSAGE(msgout)
char *msgout;

{

printf("%s",msgout); /* output message */

if(msgout == ERRMSG) /* if there was a problem with the input */

(

printf("\rCOMMANDS ARE:\r"); /* remind user of proper commands */

for(i=0;i<10;i++)

printfl"%s ",commands[i]);

}

}

/* STUBS */

/* THIS FILE CONTAINS PROGRAMMING STUBS */

BKPT_LIST()
{

printfC'in BKPT_LIST\r");
)

NO_BKPT()
{

printfC'in NO_BKPT\r");
}

GOO
{

printfC'in GO\r");

}

REGCHANGO
(

printfC'in REGCHANGXr");
}

REGK)
{

printfC'in REGlXr");
}

BKPTO
(

printfC'in BKPT\r");

}

95

APPENDIX C

THE HARDWARE ENVIRONMENT

The operating system design was implemented on an Apple Macintosh

personal computer. The operating system ran on the Apple Macintosh

computer essentially as an application under the Macintosh's operating

system. It did not take full control of the system, however it did modify the

Macintosh's vector tables.

The Macintosh is not a DOS based computer. The Macintosh operating

system is ROM based and the operating system kernel routines are in

ROM. It contains a unique input/output setup and is by no means a

development station for an imbedded MC68000 system.

Figure C.l is a block diagram of the main logic board of the Macintosh.

The Macintosh uses a great deal of Programmable Array Logic (PALS).

The PALS, which are proprietary, may have a great deal to do with the

operating speed of the Macintosh and contribute to the Macintosh not being

an optimal system for a real time development station.

96

<l-

LU O
CO Q.

,_1 CVJ

Lll O

- <

LU CC

CC
LLI

h-
X
LU

Q

o
>
UJ

Q
Z
ii<

^^^^^^^^^M^Mk^

CC
LU

§ 22 CC^ Q I-
z
o
o

I 1

o o
UJ 7"
Q >-

> W

> d CC h-;

£
5>d c\i

o
UJ

9
>

w
CC

I- UJ
LL h-

I^
CO O

LU
CC

U

cr
UJ

<
LU
D.
CO

<0

Z LU
::< UJ

ijCO Q

cc:

o:

Q. LU
Z
LU :

<
CC

Xl
ills =>

iililO ^

^MMMUMUMM

a
03

03

Q

o

s

03
o
W
o
a

en

O

97

APPENDIX D

READY QUEUE PERFORMANCE DATA

The following data was recorded using the SY6522 timer. The

execution times shown are the times necessary for the Scheduler to

schedule eight jobs per minor cycle until the queue is full. The maximum

jobs the queue could hold was fifty. The time was measured in E-Clock

cycles, the E-Clock runs at 0.9792 MHz.

Number of Times E-Clocks
Schedule Called Runl Run 2 Run 3

1 2252 2241 2255
2 2392 2565 2392

3 2432 2389 2435

4 2599 2644 2556

5 2447 2675 2436
6 2478 2603 2476

7 1001 1001 999

The following data measurements are for the Serve routine. The data

was acquired by starting with a full queue and serving one element at a

time until the queue was empty.

Number of Elements Time to Serve
in Queue Before Serve in ms

50 0.561

49 0.534

48 0.546

47 0.649

46 0.549

45 0.543

44 0.523

43 0.564

42 0.559

98

Number of Elements Time to S
in Queue Before Serve in ms

41 0.556
40 0.545
39 0.544

38 0.551

37 0.543
36 0.548
35 0.526
34 0.550
33 0.523

32 0.444
31 0.458
30 0.451

29 0.469
28 0.543
27 0.438

26 0.455
25 0.460
24 0.453
23 0.463
22 0.361

21 0.438

20 0.448
19 0.364
18 0.426
17 0.419
16 0.383
15 0.420
14 0.359
13 0.352
12 0.304
11 0.355
10 0.312
9 0.349
8 0.362
7 0.273
6 0.324
5 0.269
4 0.238
3 0.202
2 0.165
1 0.170

99

LIST OF REFERENCES

1. National Aeronautics and Space Administration Technical
Memorandum 72860, Diptal Flv-Bv-Wire FlightControl Validation
Experience , by Kenneth J. Szalai, Calvin R. Jarvis, Vincent A. Megna,
Larry D. Brock, and Robert N. O'Donnell, December 1978.

2. National Aeronautics and Space Administration CR-163117, Advanced
Flight Control Svstem Studv . by G. L. Hartmann, J. E. Hall, Jr., E. R.

Rang, H. P. Lee, R. W. Schulte, and W. K. Ng, November 1982.

3. Dijkstra E.W., "The structure of T.H.E Multiprogramming System,"
Communications of the ACM . Vol 11, No. 5, May 1968.

4. Deitel, Harvey M., Operating Svstems . Addison-Wesley Publishing
Company, Inc., 1984.

5. Stubbs, Daniel F. and Webre, Neil W., Data Structures with Abstract
Data Types and Pascal . Brooks/Cole Publishing Company, 1985.

6. Kernighan, Grian W. and Ritchie, Dennis M., The C Programming
Language Prentice-Hall, Inc., 1978.

7. M68000 8-/16-/32-Bit Microprocessors Programmer's Reference Manual ,

fifth edition, Prentice-Hall, Inc., 1986.

100

BIBLIOGRAPHY

Charles Stark Draper Laboratory CSDL-P-1727, Fault Tolerant
Processor Concepts and Operation , by Basil T. Smith, 1 May 1983.

Freedman, A. L. and Lees, R.A., Real-Time Computing Systems .

Crane, Russak and Company, Inc., 1977.

Inside Macintosh . Volumes I,II,III, and IV, Addison-Wesley
Publishing Company, Inc., 1985.

Knuth, Donald E., The Art of Computer Programming. Volume 3.

Searching and Sorting . Addison-Wesley Publishing Company, Inc.,

1973.

Liebowitz, Burt H. and Carson, John H., Multiple Processor Systems
for Real-Time Applications . Prentice-Hall, Inc., 1985.

NCR Microelectronics, NCR Microelectronics Data Book . 1985.

Shaw, Alan C, The Logical Design of Operating Systems . Prentice-

Hall, Inc., 1985.

Tsichritzis, Dionysios C. and Bernstein, Philip A., Operating Systems .

Academic Press, Inc., 1974.

101

n Y ^ « f

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station

Alexandria Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62 1

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5000

4. Professor Larry W. Abbott, Code 62 At 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Sherif Michael, Code 62 Mi 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Commanding Officer 1

Attn: LT Robert J. Voigt
Naval Underwater Systems Center
Naval Education and Training Center
Newport, Rhode Island 02841-5000

102

1 8070

i

DUDLEY KIVTOX LIBRART -

NAVAL P0STGRADT7ATE SCHOOT.
MOHTEREY. CALIPOR.TIA 8^943 gOOS

Thesis
V855 Voigt
c.l The design of a real

time operating system for
a fault tolerant micro-
computer.

_

Thesis
V855

c.l
Voigt

The dec-?g- of a re--!
time operating system for
a fault tolerant micro-
computer.

